# -*- coding: utf-8; mode: tcl; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- vim:fenc=utf-8:ft=tcl:et:sw=4:ts=4:sts=4 PortSystem 1.0 PortGroup python 1.0 name py-imagehash python.rootname ImageHash version 4.3.1 categories-append devel graphics platforms {darwin any} supported_archs noarch license BSD maintainers nomaintainer description Perceptual Image Hashing Module long_description Image hashes tell whether two images look nearly \ identical. This is different from cryptographic \ hashing algorithms (like MD5, SHA-1) where tiny \ changes in the image give completely different \ hashes. In image fingerprinting, we actually want \ our similar inputs to have similar output hashes \ as well. The image hash algorithms (average, \ perceptual, difference, wavelet) analyse the image \ structure on luminance (without color \ information). The color hash algorithm analyses \ the color distribution and black & gray fractions \ (without position information). homepage https://github.com/JohannesBuchner/imagehash checksums rmd160 46c6a282f7ebb9c3fb5256a318259699fdb9e817 \ sha256 7038d1b7f9e0585beb3dd8c0a956f02b95a346c0b5f24a9e8cc03ebadaf0aa70 \ size 296989 python.versions 39 310 311 312 if {${subport} ne ${name}} { depends_run-append \ port:py${python.version}-numpy \ port:py${python.version}-Pillow \ port:py${python.version}-pywavelets \ port:py${python.version}-scipy }